Gradient‐based eigenvalue optimization for electromagnetic cavities with built‐in mode matching

Author:

Ziegler Anna1ORCID,Hahn Robert1ORCID,Isensee Victoria1ORCID,Nguyen Anh Duc1,Schöps Sebastian1ORCID

Affiliation:

1. Institute for Accelerator Science and Electromagnetic Fields Technical University of Darmstadt Darmstadt Germany

Abstract

AbstractShape optimization with respect to eigenvalues of a cavity plays an important role in the design of new resonators or in the optimization of existing ones. This paper proposes a gradient‐based optimization scheme, which is enhanced with closed‐form shape derivatives of the system matrices. Based on these, accurate derivatives of eigenvalues, eigenmodes, and the cost function can be computed with respect to the geometry, which significantly reduces the computational effort of the optimizer. The work is demonstrated by applying it to the 9‐cell TESLA cavity, for which the design parameters of the computational model are considered as optimization variables to match the design criteria for devices in realistic use cases. Since eigenvalues may cross during the shape optimization of a cavity, a new algorithm based on an eigenvalue matching procedure is proposed, to ensure the optimization of the desired mode in order to also enable successful matching along large shape variations.

Publisher

Institution of Engineering and Technology (IET)

Reference26 articles.

1. Galek T. Brackebusch K. Flisgen T. vanRienen U.:BERLinPro 7‐cell SRF cavity optimization and HOMs external quality factors estimation.Proceedings of IPAC 2013 pp.2331–2333. JACoW Geneva (2013)

2. Constrained multiobjective shape optimization of superconducting RF cavities considering robustness against geometric perturbations;Kranjčević M.;Phys. Rev. Accel. Beams,2019

3. Multi-objective shape optimization of radio frequency cavities using an evolutionary algorithm

4. Udongwo S.:Design and optimisation of an 800 MHz 5‐cell elliptical SRF cavity fortt¯$\text{t}\bar{\mbox{t}}$working point of the future circular electron‐positron collider.Proceedings of IPAC 2023 pp.746–749.JACoW Geneva (2023)

5. Kennedy J. Eberhart R.:Particle swarm optimization.IEEE International Conference on Neural Networks. vol.4 pp.1942–1948.IEEE Piscataway NJ(1995)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3