Research on assessment method for main insulation state of converter transformer based on time‐frequency domain dielectric response

Author:

Zhang Yizhou1,Yun Hao1,Zhang Mingze23ORCID,Lei Shengjie3,Sun Yufei1

Affiliation:

1. China Nuclear Power Operation Technology Corporation, Ltd. Wuhan China

2. School of Measurement and Communication Engineering Harbin University of Science and Technology Harbin China

3. Key Laboratory of Engineering Dielectrics and Its Application Ministry of Education Harbin University of Science and Technology Harbin China

Abstract

AbstractThe converter transformer is an essential part of the DC transmission system. Compared with the traditional oil‐impregnated AC transformer, the main insulation of the converter transformer bears more complex electric field aging stress during long‐term operation. The influence of the proportion of AC components in the AC/DC composite electric field on insulation aging is still unclear. Therefore, a combined aging test platform of composite electric field and thermal was built in the laboratory, and accelerated aging tests of oil‐paper insulation under different AC/DC ratios were carried out. Through the time‐frequency domain dielectric response characteristics of oil‐paper insulation, the quantitative relationship between the time‐frequency domain dielectric response characteristic parameters and AC proportional coefficient in different aging stages was obtained. The results show that the influence of the AC component on the aging of the oil‐impregnated pressboard is more prominent. The maximum relaxation polarization time and the maximum exponential coefficient of polarization–depolarization current (PDC) can effectively characterize the aging of oil‐paper insulation. Meanwhile, to accurately assess the insulation state of the converter transformer, this paper established the equivalent dielectric relaxation model for the main insulation structure. A quantitative assessment method for moisture content and aging of oil‐paper insulation based on time‐frequency domain dielectric response was proposed. The influence of transformer oil conductivity, test temperature, and main insulation structure was eliminated. The effectiveness of this method was verified by comparative tests, the maximum error for DP is 20, and the maximum error for moisture content is 0.15%. The research results of this paper can provide theoretical support for on‐site assessment of converter transformer insulation status.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3