Deep learning method for predicting electromagnetic emission spectrum of aerospace equipment

Author:

Zhang Yuting12ORCID

Affiliation:

1. Beijing Institute of Spacecraft System Engineering Beijing China

2. Beijing Engineering Research Center of EMC and Antenna Test Technology Beijing China

Abstract

AbstractThis paper proposes a deep learning method to predict the electromagnetic emission spectrum in the electromagnetic compatibility (EMC) test of aerospace products. A threshold‐based data decomposition method is used to propose the spike signal, reconstruct the original test data, and solve the contradiction between the overfitting and prediction accuracy of the deep learning method to deal with the EMC test spectrum. Using a long short‐term memory neural network architecture for predicting electromagnetic emission spectrum, the Bayesian optimization method is used to optimize the network hyperparameter, and the acquisition function is introduced into the loss function to improve the comprehensive training optimization of deep learning network. Apply the method to three numerical examples: signal line current conduction emission, power line voltage conduction emission, and electric field radiation emission. The analysis results indicate that at a 95% confidence level, the predicted electromagnetic emission spectrum is basically consistent with the test results. The prediction results can be used as the basis for EMC evaluation of aerospace electronic equipment.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3