Bubble migration characteristics in power transformer oil under coupled stresses of forced vibration and electrical field

Author:

Ladislas Niyomugabo Emmanuel1,Li Qingmin1ORCID,Liu Qiushi1,Jie Wu2,Weimin Huang2

Affiliation:

1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing China

2. Electric Power Research Institute State Grid Anhui Electric Power Company Hefei Anhui Province China

Abstract

AbstractThe stresses existing in power transformers lead to the generation of bubbles. They are the primary source that worsens and leads to insulation failure. Due to the complexity of bubble dynamics, it is challenging to figure out bubble mechanisms. However, creation, migration, and accumulation mechanisms require further explanation. A set of experiments has been conducted to provide a scientific overview of bubbles. The results revealed that buoyancy is dominant in low electric fields, while high electric fields affect bubbles' rise. Bubbles stretch and oscillate while moving. When the electric field is not strong, the AC field reduces the duration and volume of bubble detachment. Vibration stress on the other side is leading the bubble motion including detachment frequency and migration speed. Under the combination of AC and vibration stresses, the bubble distortion degree aggravates and bubble gathering formation is easy. This research can provide a deeper acumen of the bubble's actions beneath a power transformer under a combination of vibration and electric fields. It provides essential technique parameters to deal with while investigating bubble's problems and related engineering research areas.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3