A novel blind tamper detection and localization scheme for multiple faces in digital images

Author:

Thabit Rasha12ORCID

Affiliation:

1. Department of Computer Techniques Engineering Dijlah University College Baghdad Iraq

2. Computer Engineering College of Engineering Al‐Iraqia University Baghdad Iraq

Abstract

AbstractFace image manipulation detection (FIMD) is a research area of great interest, widely applicable in fields requiring data security and authentication. Existing FIMD schemes aim to identify manipulations in digital face images, but they possess individual strengths and limitations. Most schemes can only detect specific manipulations under certain conditions, leading to variable success rates across different images. The literature lacks emphasis on detecting manipulations involving multiple faces. This paper introduces a novel blind tamper detection and localization scheme specifically designed for multiple faces in digital images. The proposed multiple faces manipulation detection (MFMD) scheme consists of two stages: face detection and selection, and image watermarking. Through extensive experiments, the MFMD scheme's performance has been evaluated on various multiple‐face images, considering embedding capacity, payload, watermarked image quality, time complexity, and manipulation detection ability. The results demonstrate the MFMD scheme's efficacy in detecting different types of manipulations for multiple faces in images. Furthermore, the watermarked images exhibit high visual quality, even when multiple faces are present. The scheme's efficiency recommends it for practical applications, especially in sharing personal images over unsecured networks. This research advances FIMD techniques by addressing the neglected area of multiple‐face manipulation detection. With improved accuracy, faster processing times, and resilience against various manipulations, the MFMD scheme offers valuable capabilities for enhancing data security and authentication in real‐world scenarios.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI-assisted deepfake detection using adaptive blind image watermarking;Journal of Visual Communication and Image Representation;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3