Brain tumour segmentation of MR images based on custom attention mechanism with transfer‐learning

Author:

Vatanpour Marjan1ORCID,Haddadnia Javad1

Affiliation:

1. Department of Biomedical Engineering Hakim Sabzevari University Sabzevar Iran

Abstract

AbstractThe automatic segmentation of brain tumours is a critical task in patient disease management. It can help specialists easily identify the location, size, and type of tumour to make the best decisions regarding the patients' treatment process. Recently, deep learning methods with attention mechanism helped increase the performance of segmentation models. The proposed method consists of two main parts: the first part leverages a deep neural network architecture for biggest tumour detection (BTD) and in the second part, ResNet152V2 makes it possible to segment the image with the attention block and the extraction of local and global features. The custom attention block is used to consider the most important parts in the slices, emphasizing on related information for segmentation. The results show that the proposed method achieves average Dice scores of 0.81, 0.87 and 0.91 for enhancing core, tumour core and whole tumour on BraTS2020 dataset, respectively. Compared with other segmentation approaches, this method achieves better performance on tumour core and whole tumour. Further comparisons on BraTS2018 and BraTS2017 validation datasets show that this method outperforms other models based on Dice score and Hausdorff criterion.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3