Affiliation:
1. School of Information Science and Engineering Shandong University Qingdao China
2. School of Control Science and Engineering Shandong University Jinan China
3. School of Information and Control Engineering Qingdao University of Technology Qingdao China
4. School of Communication and Information Engineering Shanghai University Shanghai China
Abstract
AbstractThe demand for high‐resolution videos has been consistently rising across various domains, propelled by continuous advancements in societal. Nonetheless, limitations in imaging and economic factors often result in obtaining low‐resolution images. The currently available space‐time video super‐resolution methods often fail to fully exploit the information existing within the spatio‐temporal domain. To address this problem, the issue is tackled by conceptualizing the input low‐resolution video as a cuboid structure. An innovative methodology called “Cuboid‐Net”, which incorporates a multi‐branch convolutional neural network, is introduced. Cuboid‐Net is designed to collectively enhance the spatial and temporal resolutions of videos, enabling the extraction of rich and meaningful information across both spatial and temporal dimensions. Specifically, the input video is taken as a cuboid to generate different directional slices as input for different branches of the network. The proposed network contains four modules, that is, a multi‐branch‐based hybrid feature extraction module, a multi‐branch‐based reconstruction module, a first‐stage quality enhancement module, and a second‐stage cross frame quality enhancement module for interpolated frames only. Experimental results demonstrate that the proposed method is not only effective for spatial and temporal super‐resolution of video but also for spatial and angular super‐resolution of light field.
Funder
Natural Science Foundation of Shandong Province
National Natural Science Foundation of China
Taishan Scholar Project of Shandong Province
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献