Affiliation:
1. School of Computer and Communication Engineering Changsha University of Science and Technology Changsha China
2. School of Computer and Artificial Intelligence Huaihua University Huaihua China
3. Institute of Artificial Intelligence and Blockchain Guangzhou University Guangzhou Guangdong China
Abstract
AbstractMorphing attacks (MAs) pose a substantial security threat to the Automatic Border Control (ABC) system. While a few morphing attack detection (MAD) methods have been proposed, the face morphing accomplice's facial restoration has not received sufficient attention. Due to the inability to foresee the morphing factor used for a particular morphed image, selecting the appropriate de‐morphing factor becomes a challenging problem in the restoration of the accomplice's facial image. If the morphing factor cannot be chosen reasonably, achieving the desired restoration effect is difficult. Therefore, this paper presents an adaptive de‐morphing factor framework (ADFF) architecture for restoring the accomplice's facial image. By exploiting the morphed images stored in the electronic passport system and the real‐time captured criminal's images, ADFF can effectively restore the accomplice's facial image. Experimental results and analysis show that ADFF can significantly reduce the security threats of MAs on ABC.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hunan Province
Natural Science Foundation of Guangdong Province
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献