Affiliation:
1. School of Computer Science and Technology Henan Polytechnic University Jiaozuo China
2. School of Software Henan Polytechnic University Jiaozuo China
Abstract
AbstractSingle image dehazing in real scenarios is still a particularly challenging task due to the large domain discrepancy between synthetic and real hazy images. To address this problem, the dual‐route domain‐aware adaptation framework with the bridging domain is proposed. First, inspired by the effective multistage strategy in low‐level tasks, the bridging domain is constructed with the color‐preserved adaptive histogram equalization to facilitate the adaptation and improve the performance of real hazy images. Second, the totally shared structure is relaxed and the residual dual‐path domain‐aware modules (RDDM) for synthetic and the bridging domains are proposed, which facilitates extracting the domain‐specific haze information with the different parameters. Third, a half‐cyclic constraint is proposed for the unsupervised hazy images to avoid structure distortion during the unsupervised adversarial training process. Finally, for convenience in the inference stage, feature enhancement modules (FEM) are proposed for the original real hazy images to learn the pre‐process operation in the training stage. Extensive qualitative and quantitative experiments demonstrate that the proposed method significantly improves the dehazing performance on synthetic and real hazy images.
Funder
National Natural Science Foundation of China
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献