A CBAM‐GAN‐based method for super‐resolution reconstruction of remote sensing image

Author:

Wang Longbao12ORCID,Yu Qing1,Li Xin1,Zeng Hui3,Zhang Hailong3,Gao Hongmin1ORCID

Affiliation:

1. School of Computer and Information Hohai University Nanjing China

2. Key Laboratory of Water Big Data Technology of Ministry of Water Resources Hohai University Nanjing China

3. Gezhouba Hydroelectric Power Plant China Yangtze Power Co., Ltd. Beijing China

Abstract

AbstractAs satellite imagery technology advances, remote sensing plays an increasingly prominent role in modern society. Nevertheless, the limitations of existing imaging sensors and complex atmospheric conditions constrain the quality of raw remote sensing data, posing challenges for interpretation and noise reduction. Super‐resolution technology focuses on enhancing low‐quality, low‐resolution remote sensing images. In this study, we introduce a method that utilizes a high‐order degradation model to generate low‐resolution remote sensing images. We employ a Generative Adversarial Network with a Convolutional Block Attention Module (CBAM‐GAN) to enhance these images, reducing noise interference and improving texture and feature display. Our approach outperforms other methods on the UCMerced‐LandUse, WHU‐RS19, and AID datasets. Specifically, it raises SSIM index scores to 0.9443, 0.8928, and 0.8633, respectively, exceeding baselines by 1.31%, 0.19%, and 1.30%. The MOS index also improves to 3.98, 3.96, and 3.83, respectively, representing a 2.31%, 8.20%, and 2.96% gain over the baseline. Our reconstruction produces superior results, demonstrating the effectiveness of our proposed method.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3