DeepFake detection against adversarial examples based on D‐VAEGAN

Author:

Chen Ping12ORCID,Xu Ming1,Qi Jianxiang1

Affiliation:

1. School of Cyberspace Hangzhou Dianzi University Hangzhou Zhejiang Province China

2. School of Computer Information Minnan Science and Technology University, Quanzhou Fujian Province China

Abstract

AbstractRecent years, the development of DeepFake has raise a lot of security problems. Therefore, detection of DeepFake is critical. However, the existing DeepFake detection methods are often vulnerable to adversarial attacks, i.e. adding carefully crafted imperceptible perturbations into forged images is possible to evade detection. In this paper, a DeepFake detection method based on image denoising is proposed by combining variational autoencoder (VAE) and generative adversarial network (GAN), namely D‐VAEGAN. Firstly, an encoder is designed to extract the features of the image in a low‐dimensional latent space. Then, a decoder reconstructs the original clean image using the features in this low‐dimensional latent space. Secondly, an auxiliary discriminative network is introduced to further improve the performance of the model, which improves the quality of the reconstructed images. Furthermore, feature similarity loss is added as a penalty term to the reconstruction optimization function to improve the adversarial robustness. Experimental results on the FaceForensics++ dataset show that the proposed approach significantly outperforms the five adversarial training‐based defence methods. The approach achieves 96% in accuracy, which is on average about 50% higher than other comparison methods.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3