TRACL: Temporal reconstruction and adaptive consistency loss for semi‐supervised video semantic segmentation

Author:

Liang Zhixue12ORCID,Dong Wenyong13,Zhang Bo1

Affiliation:

1. School of Computer Science Wuhan University Wuhan China

2. School of Computer and Software Nanyang Institute of Technology Nanyang China

3. School of Information Network Security Xinjiang University of Political Science and Law Tumushuke China

Abstract

AbstractWhile existing supervised semantic segmentation methods have shown significant performance improvements, they heavily rely on large‐scale pixel‐level annotated data. To reduce this dependence, recent research has proposed semi‐supervised learning‐based methods that have achieved great success. However, almost all these works are mainly dedicated to image semantic segmentation, while semi‐supervised video semantic segmentation (SVSS) has been barely explored. Due to the significant difference between video data and image, simply adapting semi‐supervised image semantic segmentation approaches to SVSS may neglect the inherent temporal correlations in video frames. This paper presents a novel method (named TRACL) with temporal reconstruction (TR) and adaptive consistency loss (ACL) for SVSS, aiming to fully utilize the temporal relations of internal frames in video clip. The authors’ TR method implements the reconstruction from the feature and output levels to narrow the distribution gap between internal video frames. Specifically, considering the underlying data distribution, the authors construct Gaussian models for each category, and use probability density function to obtain the similarity between different feature maps for temporal feature reconstruction. The authors’ ACL can adaptively select two pixel‐wise consistency loss including Flow Consistency Loss and Reconstruction Consistency Loss, providing stronger supervision signals for unlabelled frames during model training. Additionally, the authors extend their method to unlabelled video for more training data by employing mean‐teacher structure. Extensive experiments on three datasets including Cityscapes, Camvid and VSPW demonstrate that the authors’ proposed method outperforms previous state‐of‐the‐art methods.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3