Dual‐granularity feature fusion in visible‐infrared person re‐identification

Author:

Cai Shuang1ORCID,Yang Shanmin1,Hu Jing1,Wu Xi1

Affiliation:

1. Chengdu University of Information Technology Chengdu China

Abstract

AbstractVisible‐infrared person re‐identification (VI‐ReID) aims to recognize images of the same person captured in different modalities. Existing methods mainly focus on learning single‐granularity representations, which have limited discriminability and weak robustness. This paper proposes a novel dual‐granularity feature fusion network for VI‐ReID. Specifically, a dual‐branch module that extracts global and local features and then fuses them to enhance the representative ability is adopted. Furthermore, an identity‐aware modal discrepancy loss that promotes modality alignment by reducing the gap between features from visible and infrared modalities is proposed. Finally, considering the influence of non‐discriminative information in the modal‐shared features of RGB‐IR, a greyscale conversion is introduced to extract modality‐irrelevant discriminative features better. Extensive experiments on the SYSU‐MM01 and RegDB datasets demonstrate the effectiveness of the framework and superiority over state‐of‐the‐art methods.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3