Affiliation:
1. Chongqing Institute of Green and Intelligent Technology Chinese Academy of Science Chongqing China
2. Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
3. Department of Anesthesiology Southwest Hospital The Third Military Medical University Chongqing China
Abstract
AbstractAnemia (hemoglobin (Hb) < 12.0 g/dL) is significantly correlated with many diseases. An invasive technique is the peripheral blood Hb detection method, which is used to examine red and white blood cells and platelets in clinical laboratory settings. However, non‐invasive methods for measuring Hb mainly include low‐precision prediction based on eye images and complex operation prediction based on fundus images. Moreover, these types of anemia testing techniques are time‐consuming, tedious, or prone to errors. Thus, developing a convenient and high‐precision method is vital for predicting Hb concentration. This study proposes self‐supervised causal features using actor‐critical reinforcement learning to improve the model prediction performance. Two networks are proposed: Actor Predictor and Hemoglobin Predictor to predict Hb concentration. Moreover, the model performance is evaluated using different techniques, namely, Mean Absolute Error (MAE) and Mean Square Error (MSE), via real eye image data and a smartphone. This model achieved 1.19(1.01,1.38) on the MAE and 2.25(1.59,2.90) on the MSE, which outperformed previous eye images' Hb prediction methods and was nearly similar to the fundus images' Hb prediction methods. The inference time was less than 0.05 s, making it efficient and accurate for predicting Hb. This model can be used for mobile deployment and health self‐screening.
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献