Intelligent fault diagnosis method for rotating machinery based on vibration signal analysis and hybrid multi‐object deep CNN
Author:
Affiliation:
1. College of Energy and Power EngineeringNanjing University of Aeronautics and AstronauticsNo. 29, Yudao StreetNanjingPeople's Republic of China
2. China Ship Development and Design CenterWuhanPeople's Republic of China
Funder
National Natural Science Foundation of China
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1049/iet-smt.2018.5672
Reference37 articles.
1. A review of process fault detection and diagnosis
2. A time domain approach to diagnose gearbox fault based on measured vibration signals
3. Wavelets for fault diagnosis of rotary machines: A review with applications
4. A review on empirical mode decomposition in fault diagnosis of rotating machinery
5. Independence-oriented VMD to identify fault feature for wheel set bearing fault diagnosis of high speed locomotive
Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Rotating machine bearing health prognosis using a data driven approach based on KS‐density and BiLSTM;IET Science, Measurement & Technology;2024-08-04
2. Review on deep learning classifiers for faults diagnosis of rotating industrial machinery;Service Oriented Computing and Applications;2024-07-29
3. ICPHM’23 Benchmark Vibration Dataset Applicable in Machine Learning for Systems’ Health Monitoring;2024 IEEE International Conference on Prognostics and Health Management (ICPHM);2024-06-17
4. New Correlation-function-based Method and Algorithm of Signal Processing for Fault Diagnosis of Rolling Bearings;2024 XXVII International Conference on Soft Computing and Measurements (SCM);2024-05-22
5. Method and Algorithm of Enrichment of High-Frequency Multidimensional Signals on the Example of Diagnosing the Technical Condition of Centrifugal Pump and Rolling Bearings;2024 XXVII International Conference on Soft Computing and Measurements (SCM);2024-05-22
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3