Method of state identification of rolling bearings based on deep domain adaptation under varying loads
Author:
Affiliation:
1. School of Electrical and Electronic EngineeringHarbin University of Science and TechnologyHarbinPeople's Republic of China
2. Belarusian State UniversityMinskBelarus
Funder
National Natural Science Foundation of China
Natural Science Foundation of Heilongjiang Province
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1049/iet-smt.2019.0043
Reference49 articles.
1. Generalization of deep neural network for bearing fault diagnosis under different working conditions using multiple kernel method;An Z.H.;Neurocomputing,2019
2. Rolling element bearing fault diagnosis based on non‐local means de‐noising and empirical mode decomposition
3. Cross‐domain fault diagnosis of rolling element bearings using deep generative neural networks;Li X.;IEEE Trans. Ind. Electron.,2019
4. Generalized composite multiscale permutation entropy and Laplacian score based rolling bearing fault diagnosis;Zheng J.D.;Mech. Syst. Signal Process.,2018
5. A positive energy residual (PER) based planetary gear fault detection method under variable speed conditions;Park J.;Mech. Syst. Signal Process.,2019
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimization of Deep Belief Network Based on Sparrow Search Algorithm for Rolling Bearing Fault Diagnosis;IEEE Access;2024
2. A Fast Classification Method of Rolling Bearing State Under Different Loads Based on Improved Broad Model Transfer Learning;J ELECTRON INF TECHN;2023
3. A review of the application of deep learning in intelligent fault diagnosis of rotating machinery;Measurement;2023-01
4. Fault Diagnosis Method of Rolling Bearings Under Different Working Conditions Based on Federated Feature Transfer Learning;2022 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD);2022-11-30
5. Intelligent Fault Diagnosis Method of Wind Turbines Planetary Gearboxes Based on a Multi-Scale Dense Fusion Network;Frontiers in Energy Research;2021-11-29
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3