QuDiet: A classical simulation platform for qubit‐qudit hybrid quantum systems

Author:

Chatterjee Turbasu1,Das Arnav1,Bala Subhayu Kumar1ORCID,Saha Amit12ORCID,Chattopadhyay Anupam3,Chakrabarti Amlan1

Affiliation:

1. A K Choudhury School of Information Technology University of Calcutta Kolkata India

2. Atos Pune India

3. School of Computer Science and Engineering Nanyang Technological University Singapore Singapore

Abstract

AbstractIn recent years, numerous research advancements have extended the limit of classical simulation of quantum algorithms. Although, most of the state‐of‐the‐art classical simulators are only limited to binary quantum systems, which restrict the classical simulation of higher‐dimensional quantum computing systems. Through recent developments in higher‐dimensional quantum computing systems, it is realised that implementing qudits improves the overall performance of a quantum algorithm by increasing memory space and reducing the asymptotic complexity of a quantum circuit. Hence, in this article, QuDiet, a state‐of‐the‐art user‐friendly python‐based higher‐dimensional quantum computing simulator is introduced. QuDiet offers multi‐valued logic operations by utilising generalised quantum gates with an abstraction so that any naive user can simulate qudit systems with ease as compared to the existing ones. Various benchmark quantum circuits is simulated in QuDiet and show the considerable speedup in simulation time as compared to the other simulators without loss in precision. Finally, QuDiet provides a full qubit‐qudit hybrid quantum simulator package with quantum circuit templates of well‐known quantum algorithms for fast prototyping and simulation. Comprehensive simulation up to 20 qutrits circuit on depth 80 on QuDiet was successfully achieved. The complete code and packages of QuDiet is available at https://github.com/LegacYFTw/QuDiet.

Publisher

Institution of Engineering and Technology (IET)

Subject

Theoretical Computer Science,Electrical and Electronic Engineering,Computer Science Applications,Computer Networks and Communications,Computational Theory and Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Quantum Arithmetic Operations with Intermediate Qutrits in the NISQ-era;International Journal of Theoretical Physics;2023-04-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3