Experimental feasibility analysis of quantum/classical coexistence over fibre and free space links

Author:

Stathis Aristeidis1ORCID,Ntanos Argiris1ORCID,Toumasis Panagiotis1ORCID,Lyras Nikolaos K.1ORCID,Giannoulis Giannis1ORCID,Avramopoulos Hercules1ORCID

Affiliation:

1. School of Electrical and Computer Engineering National Technical University of Athens Zografou Athens Greece

Abstract

AbstractThe authors present a novel approach to Quantum Key Distribution (QKD) research, emphasising cost‐effectiveness and practicality using a single photon polarisation‐encoded system employing mainly commercial off‐the‐shelf components. This study diverges from previous high‐cost, high‐end setups by exploring the viability of QKD in more accessible and realistic settings. Our approach focuses on practical measurements of the signal‐to‐noise ratio by analysing polarisation‐encoded photonic qubits over various transmission scenarios. The authors introduce a simplified evaluation method that incorporates experimental measurements, such as noise sources and losses, into a semi‐empirical theoretical framework. This framework simulates the standard DS‐BB84 protocol to estimate Secure Key Rates (SKRs), offering an alternative approach on the evaluation of the practical implementation of QKD. Specifically, the authors examine the feasibility of QKD over a 2.2 km intra‐campus fibre link in coexistence scenarios, identifying optimal Wavelength‐Division Multiplexing allocations to minimise Raman noise, achieving an expected SKR of up to 300 bps. Additionally, the authors’ study extends to 40 m indoor and 100 m outdoor Free‐Space Optical (FSO) links using low‐cost components, where the authors recorded Quantum Bit Error Rate (QBER) values below 3.2%, allowing for possible SKRs up to 600 bps even in daylight operation. The converged fibre/FSO scenario demonstrated robust performance, with QBER values below 3.7% and an expected SKR of over 200 bps. Our research bridges the gap between high‐end and economical QKD solutions, providing valuable insights into the feasibility of QKD in everyday scenarios, especially within metropolitan fibre based and FSO links. By leveraging cost‐effective components and a simplified single photon exchange setup, the authors work paves the way for the effortless characterisation of deployed infrastructure, highlighting its potential in diverse settings and its accessibility for widespread implementation.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3