Deep reinforcement learning‐based routing and resource assignment in quantum key distribution‐secured optical networks

Author:

Sharma Purva1ORCID,Gupta Shubham1,Bhatia Vimal12,Prakash Shashi3

Affiliation:

1. Department of Electrical Engineering Indian Institute of Technology (IIT) Indore Indore India

2. Faculty of Informatics and Management University of Hradec Králové Hradec Králové Czech Republic

3. Department of Electronics and Instrumentation Engineering Institute of Engineering and Technology Devi Ahilya University Indore India

Abstract

AbstractIn quantum key distribution‐secured optical networks (QKD‐ONs), constrained network resources limit the success probability of QKD lightpath requests (QLRs). Thus, the selection of an appropriate route and the efficient utilisation of network resources for establishment of QLRs are the essential and challenging problems. This work addresses the routing and resource assignment (RRA) problem in the quantum signal channel of QKD‐ONs. The RRA problem of QKD‐ONs is a complex decision making problem, where appropriate solutions depend on understanding the networking environment. Motivated by the recent advances in deep reinforcement learning (DRL) for complex problems and also because of its capability to learn directly from experiences, DRL is exploited to solve the RRA problem and a DRL‐based RRA scheme is proposed. The proposed scheme learns the optimal policy to select an appropriate route and assigns suitable network resources for establishment of QLRs by using deep neural networks. The performance of the proposed scheme is compared with the deep‐Q network (DQN) method and two baseline schemes, namely, first‐fit (FF) and random‐fit (RF) for two different networks, namely The National Science Foundation Network (NSFNET) and UBN24. Simulation results indicate that the proposed scheme reduces blocking by 7.19%, 10.11%, and 33.50% for NSFNET and 2.47%, 3.20%, and 19.60% for UBN24 and improves resource utilisation up to 3.40%, 4.33%, and 7.18% for NSFNET and 1.34%, 1.96%, and 6.44% for UBN24 as compared with DQN, FF, and RF, respectively.

Funder

Indo-US Science and Technology Forum

Ministry of Education, India

Publisher

Institution of Engineering and Technology (IET)

Subject

Theoretical Computer Science,Electrical and Electronic Engineering,Computer Science Applications,Computer Networks and Communications,Computational Theory and Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3