Bioinformatics approach to identify the hub gene associated with COVID‐19 and idiopathic pulmonary fibrosis

Author:

Shi Wenchao1ORCID,Li Tinghui2,Li Huiwen3,Ren Juan3,Lv Meiyu1,Wang Qi3,He Yaowu3,Yu Yao3,Liu Lijie1,Jin Shoude1,Chen Hong3

Affiliation:

1. Department of Respiration The Fourth Affiliated Hospital of Harbin Medical University Harbin Medical University Harbin Heilongjiang China

2. Department of Respiration Hainan Cancer Hospital Haikou Hainan China

3. Department of Respiration The Second Affiliated Hospital of Harbin Medical University Harbin Medical University Harbin Heilongjiang China

Abstract

AbstractThe coronavirus disease 2019 (COVID‐19) has developed into a global health crisis. Pulmonary fibrosis, as one of the complications of SARS‐CoV‐2 infection, deserves attention. As COVID‐19 is a new clinical entity that is constantly evolving, and many aspects of disease are remain unknown. The datasets of COVID‐19 and idiopathic pulmonary fibrosis were obtained from the Gene Expression Omnibus. The hub genes were screened out using the Random Forest (RF) algorithm depending on the severity of patients with COVID‐19. A risk prediction model was developed to assess the prognosis of patients infected with SARS‐CoV‐2, which was evaluated by another dataset. Six genes (named NELL2, GPR183, S100A8, ALPL, CD177, and IL1R2) may be associated with the development of PF in patients with severe SARS‐CoV‐2 infection. S100A8 is thought to be an important target gene that is closely associated with COVID‐19 and pulmonary fibrosis. Construction of a neural network model was successfully predicted the prognosis of patients with COVID‐19. With the increasing availability of COVID‐19 datasets, bioinformatic methods can provide possible predictive targets for the diagnosis, treatment, and prognosis of the disease and show intervention directions for the development of clinical drugs and vaccines.

Publisher

Institution of Engineering and Technology (IET)

Subject

Cell Biology,Genetics,Molecular Biology,Modeling and Simulation,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3