A new method for calculation of closed‐form response of linear time‐invariant systems to periodic input signals

Author:

Safaai‐Jazi Ahmad1ORCID

Affiliation:

1. Bradley Department of Electrical and Computer Engineering Virginia Polytechnic Institute and State University Blacksburg Virginia USA

Abstract

AbstractA new method for finding closed‐form time‐domain solutions of linear time‐invariant (LTI) systems with arbitrary periodic input signals is presented. These solutions, unlike those obtained based on the conventional Fourier‐phasor method, have a finite number of terms in one period. To implement the proposed method, the following steps are carried out: (1) For a given system, represented by a transfer function, an impulse response, a block diagram etc., the governing differential equation relating the output of the system, , to its input, , is obtained. (2) An auxiliary differential equation is formed by simply replacing with and equating the input side to alone. The auxiliary differential equation is solved for each time segment of the input signal in one period, leaving the constant coefficients associated with the homogeneous solutions as unknowns. For an nth‐order system with an input signal consisting of q segments in one period, there are such unknown coefficients. (3) Continuity of and its derivatives, at the connection points of successive segments and the periodicity conditions for the beginning and end points of the period are implemented. (4) The outcome of step 3 is a system of equations in terms of unknown coefficients described in step 2. Solving this system of equations, the solution for in one period is obtained. (5) Finally, using the linearity and differentiation properties of the system and the coefficients of the input side of the differential equation of the system, the total response, , in one period is constructed in terms of and its derivatives. For stable LTI systems, the proposed method can be used without any limitations.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Control and Systems Engineering

Reference12 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3