Affiliation:
1. State Key Laboratory of Automotive Simulation and Control Jilin University Changchun China
2. School of Artificial Intelligence Jilin University Changchun China
3. College of Electronic and Information Engineering Tongji University Shanghai China
Abstract
AbstractQuantifying the complexity of traffic scenarios not only provides an essential foundation for constructing the scenarios used in autonomous vehicle training and testing, but also enhances the robustness of the resulting driving decisions and planning operations. However, currently available quantification methods suffer from inaccuracies and coarse‐granularity in complexity measurements due to issues such as insufficient specificity or indirect quantification. The present work addresses these challenges by proposing a comprehensive entropy‐based model for quantifying traffic scenario complexity across multiple dimensions based on a consideration of the essential components of the traffic environment, including traffic participants, static elements, and dynamic elements. In addition, the limitations of the classical information entropy models applied for assessing traffic scenarios are addressed by calculating magnitude entropy. The proposed entropy‐based model is analyzed in detail according to its application to simulated traffic scenarios. Moreover, the model is applied to real world data within a naturalistic driving dataset. Finally, the effectiveness of the proposed quantification model is illustrated by comparing the complexity results obtained for three typical traffic scenarios with those obtained using an existing multi‐factor complexity quantification method.
Funder
National Natural Science Foundation of China
Publisher
Institution of Engineering and Technology (IET)