An entropy‐based model for quantifying multi‐dimensional traffic scenario complexity

Author:

Huang Ping12ORCID,Ding Haitao1,Chen Hong3

Affiliation:

1. State Key Laboratory of Automotive Simulation and Control Jilin University Changchun China

2. School of Artificial Intelligence Jilin University Changchun China

3. College of Electronic and Information Engineering Tongji University Shanghai China

Abstract

AbstractQuantifying the complexity of traffic scenarios not only provides an essential foundation for constructing the scenarios used in autonomous vehicle training and testing, but also enhances the robustness of the resulting driving decisions and planning operations. However, currently available quantification methods suffer from inaccuracies and coarse‐granularity in complexity measurements due to issues such as insufficient specificity or indirect quantification. The present work addresses these challenges by proposing a comprehensive entropy‐based model for quantifying traffic scenario complexity across multiple dimensions based on a consideration of the essential components of the traffic environment, including traffic participants, static elements, and dynamic elements. In addition, the limitations of the classical information entropy models applied for assessing traffic scenarios are addressed by calculating magnitude entropy. The proposed entropy‐based model is analyzed in detail according to its application to simulated traffic scenarios. Moreover, the model is applied to real world data within a naturalistic driving dataset. Finally, the effectiveness of the proposed quantification model is illustrated by comparing the complexity results obtained for three typical traffic scenarios with those obtained using an existing multi‐factor complexity quantification method.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3