A simulation‐based impact assessment of autonomous vehicles in urban networks

Author:

Sadid Hashmatullah1ORCID,Antoniou Constantinos1ORCID

Affiliation:

1. Technical University of Munich (TUM) TUM School of Engineering and Design Chair of Transportation Systems Engineering Munich Germany

Abstract

AbstractThe behavioural differences between autonomous vehicles (AVs) and human‐driven vehicles (HDVs) can significantly impact traffic efficiency, safety, and emissions. Simulation‐based impact assessments using microscopic traffic models often modify car‐following (CF) and lane‐changing (LC) configurations to differentiate AVs from HDVs. Typically, researchers adjust CF model parameters to replicate AV driving behaviour, but these assumptions can lead to varying conclusions on AV impacts. The scope of each study (e.g., freeways, highways, urban links, intersections) also influences the outcomes. This research conducts an impact assessment utilizing optimized AV driving behavior rather than assumptions on a city network level (Munich) using a simulation‐based platform. The particle swarm optimization (PSO) algorithm is used to calibrate the base model and run simulation experiments under various penetration rates (PRs) and demand scenarios. Results show significant safety improvements throughout the network under higher PRs, while lower PRs might lead to deteriorating safety. At 100% AV PR, the total number of conflicts decreased by around 25% compared to a fully HDV environment. Considering AVs' sensing capabilities, additional safety improvements are found in almost any AV PR. However, AVs might not improve traffic efficiency; in some cases, they may slightly increase average network travel time, though this change is minimal.

Funder

Deutscher Akademischer Austauschdienst

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3