Optimal operation of co‐phase traction power supply system with HESS and PV

Author:

Yang Bowei12ORCID,Chen Minwu1,Ma Lei1,He Bing2,Deng Hao1ORCID

Affiliation:

1. School of Electrical Engineering Southwest Jiaotong University Chengdu China

2. Tianfu New District Power Supply Company State Grid Sichuan Electric Power Company Chengdu China

Abstract

AbstractThe co‐phase traction power supply system (TPSS) with hybrid energy storage system (HESS) and photovoltaic (PV) is proposed to eliminate the neutral section and improve the regenerative braking energy (RBE) utilization. Although the integration of HESS and PV facilitates the energy saving and cost reduction of the co‐phase TPSS, the high cost and configuration of HESS should be considered, which is the key to affect the optimal operation strategy of co‐phase TPSS. Here, the optimal operation strategy of co‐phase TPSS with HESS and PV is proposed to design the HESS configuration, recycle RBE and improve power quality. The proposed model aims to minimize the total system cost, including HESS investment cost, electricity cost and operation and maintenance cost. Moreover, the proposed model is formulated as a mixed integer linear programming by employing linearization approaches. Finally, case studies verify that the 29.2% cost reduction rate is achieved and the three‐phase voltage unbalance meets the standard requirements.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3