RGB‐D road segmentation based on cross‐modality feature maintenance and encouragement

Author:

Yuan Xia1ORCID,Wu Xinyi1ORCID,Cui Yanchao1,Zhao Chunxia1

Affiliation:

1. School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing China

Abstract

AbstractDeep images can provide rich spatial structure information, which can effectively exclude the interference of illumination and road texture in road scene segmentation and make better use of the prior knowledge of road area. This paper first proposes a new cross‐modal feature maintenance and encouragement network. It includes a quantization statistics module as well as a maintenance and encouragement module for effective fusion between multimodal data. Meanwhile, for the problem that if the road segmentation is performed directly using a segmentation network, there will be a lack of supervised guidance with clear physical meaningful information and poor interpretability of learning features, this paper proposes two road segmentation models based on prior knowledge of deep image: disparity information and surface normal vector information. Then, a two‐branch neural network is used to process the colour image and the processed depth image separately, to achieve the full utilization of the complementary features of the two modalities. The experimental results on the KITTI road dataset and Cityscapes dataset show that the method in this paper has good road segmentation performance and high computational efficiency.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3