Two‐stage algorithm for traffic signal optimization and web‐service system development

Author:

Lee Seungyeop1ORCID,Eom Myungeun2ORCID,Kim Byung‐In1ORCID

Affiliation:

1. Department of Industrial and Management Engineering Pohang University of Science and Technology (POSTECH) Pohang Gyeongbuk Republic of Korea

2. H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta Georgia USA

Abstract

AbstractEfficient control of traffic signals for vehicles and pedestrians at intersections is critical for relieving traffic congestion. Considering the unique characteristics of intersections, such as the number of roads, the presence or absence of crosswalks, road geometric shapes, and traffic demand patterns, an appropriate phase sequence and duration for traffic signals must be established at each intersection. This paper proposes a simulation‐based two‐stage algorithm comprising integer‐constrained Adam (ICA) and tabu search (TS) to optimize the phase sequence and duration for arbitrary intersections with arbitrary traffic‐demand patterns. The ICA promptly identifies a promising region in which a global optimal solution is likely to be obtained, whereas TS determines the best solution near the region. The performance of the proposed algorithm that optimizes phase durations with fixed phase sequence is evaluated against several baseline methods using 24 instances across six actual intersections. Experimental results show that the proposed algorithm reduces the average travel time by 20.2% compared with existing traffic signals within a computation time of 4 min, thus providing a near‐optimal solution eight times faster than commonly used population‐based metaheuristics. Furthermore, the algorithm demonstrates robust performance across heterogeneous vehicles and recommends the best phase sequence that effectively alleviates congestion in current traffic signal systems. The optimized phase sequence with best phase durations further reduces the average travel time by approximately 11.3% compared with the existing phase sequence with best phase durations at an actual intersection. To facilitate its widespread use, a free, open web‐service system named “Smart Intersection for Traffic Efficiency” is developed, which enables users to optimize traffic signal systems without requiring optimization background or simulation knowledge.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3