Affiliation:
1. College of Railway Transportation Hunan University of Technology Zhuzhou China
2. College of Electrical and Information Engineering Hunan University of Technology Zhuzhou China
Abstract
AbstractA multi‐motor coordinated tracking control strategy based on a disturbance sliding‐mode observer and an anti‐saturation non‐singular fast‐terminal sliding mode is proposed to address the issues of slow convergence and controller output saturation in multi‐motor coordinated control systems. Firstly, a mathematical model of a multi‐motor traction system considering uncertain parameter perturbations, external disturbances, and dead zones was established. Secondly, a disturbance sliding‐mode observer was designed based on the mathematical model to eliminate motor disturbances and estimate the torque. The observer's forward compensation was added to design a total‐consensus‐based fast non‐singular terminal sliding‐mode controller. Then, a fast anti‐saturation auxiliary system with fast finite‐time convergence was constructed. Finally, a comparative experiment was conducted with traditional anti‐saturation sliding‐mode control to demonstrate that the proposed method had faster convergence, stronger disturbance rejection, and better tracking performance in the presence of multi‐motor parameter perturbations, unknown disturbances, and input saturation.
Funder
National Natural Science Foundation of China
Publisher
Institution of Engineering and Technology (IET)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献