Reinforcement learning‐based finite‐time cross‐media tracking control for a cross‐media vehicle under unknown dynamics and disturbances

Author:

Wu Shichong12,Xie Lingli3ORCID,Xian Jun3,Liao Fei2ORCID,Wu Wenhua2,Lu Mingqing2ORCID,Yi Xian4

Affiliation:

1. School of Systems Science and Engineering Sun Yat‐sen University Guangzhou China

2. Cross‐media Vehicle Research Center China Aerodynamics Research and Development Center Mianyang China

3. School of Mathematics Sun Yat‐sen University Guangzhou China

4. Low Speed Aerodynamic Institute China Aerodynamics Research and Development Center Mianyang China

Abstract

AbstractThis study proposes a reinforcement learning‐based finite‐time cross‐media tracking control approach for a slender body cross‐media vehicle encountering unknown hydrodynamics, wind, and wave disturbances. Initially, a reinforcement learning framework consisting of the actor neural network and critic neural network is constructed. The critic neural network monitors the actions of the actor neural network and approximates the cost function, while the actor neural network estimates the unknown hydrodynamics and disturbances, minimising the cost function to optimise performance. Subsequently, the command filter featuring finite‐time convergence is formulated, effectively managing the corresponding filter error through a proposed error compensating signal. By integrating these techniques, a reinforcement learning‐based finite‐time control strategy is developed, circumventing the singularity issue inherent in traditional finite‐time backstepping strategies. Comparative analysis with existing methods demonstrates the strong robustness of the proposed scheme against unknown hydrodynamics and disturbances, ensuring finite‐time convergence of the system's states and optimising controller performance. Finally, simulations confirm the effectiveness and superiority of the presented approach.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3