Robust and intelligent control of quadrotors subject to wind gusts

Author:

Simplício Paulo V. G.1ORCID,Benevides João R. S.1ORCID,Inoue Roberto S.2ORCID,Terra Marco H.1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, São Carlos School of Engineering University of São Paulo São Carlos São Paulo Brazil

2. Department of Computer Sciences Federal University of São Carlos São Carlos São Paulo Brazil

Abstract

AbstractThe combination of artificial neural networks with advanced control techniques has shown great potential to reject uncertainties and disturbances that affect the quadrotor during trajectory tracking. However, it is still a complex and little‐explored challenge. In this sense, this work proposes the development of robust and intelligent architectures for position control of quadrotors, improving flight performance during trajectory tracking. The proposed architectures combine a robust linear quadratic regulator (RLQR) with deep neural networks (DNNs). In addition, a comparative study is performed to evaluate the performance of the proposed architectures using three other widely used controllers: linear quadratic regulator (LQR), proportional‐integral‐derivative (PID), and feedback linearization (FL). The architectures were developed using the robot operating system (ROS), and the experiments were performed with a commercial quadrotor, the ParrotTM Bebop 2.0. Flights were performed by applying wind gusts to the aircraft's body, and the experimental results showed that using neural networks combined with controllers, robust or not, improves quadrotors' flight performance.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3