A cooperative control method combining signal control and speed control for transit with connected vehicle environment

Author:

Teng Kunmin1ORCID,Liu Haiqing2,Liu Qiang1,Lu Xiao3

Affiliation:

1. College of Electronic Engineering and Automation Shandong University of Science and Technology Qingdao China

2. School of Transportation and Logistics Engineering Shandong Jiaotong University Jinan China

3. College of Energy Storage Technology Shandong University of Science and Technology Qingdao China

Abstract

AbstractTransit operation efficiency and service quality can be enhanced through the implementation of signal and speed control. Previous studies prefer to change driving speed in priority to alleviate the adverse effects of signal timing adjustment on social vehicles. The driving safety and fuel consumption of transit are ignored. To this end, a cooperative control method consisting of three models is proposed. The cooperative control strategy model provides optimal schemes for allocating transit priority time. Based on this, the adjustment of phase time and the transit speed trajectory with the lower fuel consumption are calculated by signal control model and speed control model, respectively. Especially, the signal control model is established in the background of green wave coordinated control to further protect the travelling benefits of social vehicles. The simulation is performed in SUMO to demonstrate the effectiveness of the proposed method. The results show that the cooperative control method improves the crossing efficiency and enhances the fuel economy of transit under different arrival speeds and lengths of control area. Compared with the general signal control, the proposed method can minimize traffic interference, which is particularly obvious in a higher degree of saturation.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Science Applications,Human-Computer Interaction,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3