Enhanced LSTM‐DQN algorithm for a two‐player zero‐sum game in three‐dimensional space

Author:

Lu Bo1ORCID,Ru Le1,Lv Maolong2,Hu Shiguang1ORCID,Zhang Hongguo3,Zhao Zilong4

Affiliation:

1. National Key Lab of Unmanned Aerial Vehicle Technology Equipment Management and UAV Engineering College Air Force Engineering University Xi'an Shaanxi China

2. Air Traffic Control and Navigation College Air Force Engineering University Xi'an Shaanxi China

3. School of Aeronautics Northwestern Polytechnical University Xi'an Shaanxi China

4. Social Sciences and Technology Technical University of Munich Munich Germany

Abstract

AbstractTo tackle the challenges presented by the two‐player zero sum game (TZSG) in three‐dimensional space, this study introduces an enhanced deep Q‐learning (DQN) algorithm that utilizes long short term memory (LSTM) network. The primary objective of this algorithm is to enhance the temporal correlation of the TZSG in three‐dimensional space. Additionally, it incorporates the hindsight experience replay (HER) mechanism to improve the learning efficiency of the network and mitigate the issue of the “sparse reward” that arises from prolonged training of intelligence in solving the TZSG in the three‐dimensional. Furthermore, this method enhances the convergence and stability of the overall solution.An intelligent training environment centred around an airborne agent and its mutual pursuit interaction scenario was designed to proposed approach's effectiveness. The algorithm training and comparison results show that the LSTM‐DQN‐HER algorithm outperforms similar algorithm in solving the TZSG in three‐dimensional space. In conclusion, this paper presents an improved DQN algorithm based on LSTM and incorporates the HER mechanism to address the challenges posed by the TZSG in three‐dimensional space. The proposed algorithm enhances the solution's temporal correlation, learning efficiency, convergence, and stability. The simulation results confirm its superior performance in solving the TZSG in three‐dimensional space.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3