Zero/low overshoot conditions based on maximally‐flatness for PID‐type controller design for uncertain systems with time‐delay or zeros

Author:

Canevi Mehmet1ORCID,Söylemez Mehmet Turan1

Affiliation:

1. Control and Automation Engineering Istanbul Technical University Istanbul Turkey

Abstract

AbstractThis paper extends the characteristic ratio approach using novel inequalities to ensure zero/low overshoot for linear‐time‐invariant systems with zeros. The extension provided by this paper is based on the maximally‐flatness property of a transfer function, where the square‐magnitude of the transfer function is ensured to be a low‐pass filter. In order to be able to design low‐order/fixed structure controllers, a partial pole‐assignment approach is used instead of the full pole‐assignment used in the Characteristic Ratio Assignment (CRA) method. The developed inequalities and additional stability conditions are combined into an optimization problem using time domain restrictions when necessary. Although the method given in the paper is general, particular inequalities are developed for PI and PI‐PD controller cases, due to their frequent use in industrial applications. Similarly, First‐Order‐Plus‐Delay‐Time (FOPDT) and Second‐Order‐Plus‐Delay‐Time (SOPDT) systems are considered specifically, since most of the practical systems can be approximated by one of these types. The study is extended to plants with uncertainties where a theorem is developed to decrease computation time dramatically. The benefits of the proposed methods are demonstrated by several examples.

Funder

Bilimsel Araştırma Projeleri Birimi, İstanbul Teknik Üniversitesi

Publisher

Institution of Engineering and Technology (IET)

Reference24 articles.

1. Digital PI-PD controller design for arbitrary order systems: Dominant pole placement approach

2. Transient response control via characteristic ratio assignment

3. Polynomial Filters with Controllable Overshoot In Their Step Transient Responses

4. Haeri M. Tavazoei M.S.:To determine the characteristic polynomial coefficients based on the transient response. In:International Conference on Control Automation and Systems (ICCAS) pp.11–15.IEEE Piscataway(2005)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3