A detection and rerouting mechanism for platoon control of non‐linear autonomous vehicles under denial of service attacks

Author:

Zhang Xiaofei12ORCID,Du Haiping2,Jia Zhijuan1,He Yuchu1,Yang Yanyan1

Affiliation:

1. School of Information Science and Technology Zhengzhou Normal University Zhengzhou China

2. Faculty of Engineering and Information Sciences the University of Wollongong Wollongong New South Wales Australia

Abstract

AbstractThis paper presents a novel detection and rerouting mechanism for distributed adaptive platoon control of non‐linear autonomous connected vehicles under denial of service (DoS) attacks. DoS attacks can cause delays or losses of data packets due to blocked communication channels, leading to reducing platoon performance or even collisions among vehicles. To tackle this issue, the proposed mechanism detects and reroutes communication topology depending on the real‐time topology and the number of link failures. Real‐time detection divides the scenario of DoS attacks into three parts. According to the different scenarios, rerouting mechanisms will be utilized. A controller adapted to real‐time variable communication topology is also designed in this scheme. The adjacency matrix of the real‐time communication topology generated by the rerouting mechanism is used to update the controller so that the platoon can remain in a stable state without being affected by DoS attacks. In addition, the sliding mode controller and the observer are designed by solving linear matrix inequalities, and the platoon stability and internal stability are proven. Numerical simulation studies demonstrate that the proposed mechanism and control design can reduce the vehicle state estimate error and platoon‐tracking error to ideal states under DoS attacks. The proposed method solves the problem that the existing methods have not considered the number of link failures and the inability to restore communication when the communication topology is paralyzed.

Publisher

Institution of Engineering and Technology (IET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3