Performance enhancement of parallel‐operated inverter‐based virtual synchronous generators supplying active load

Author:

Rahimi Mohsen1ORCID,Momenzadeh Morteza1,Akhbari Allahyar1ORCID,Khooban Mohammad Hassan2

Affiliation:

1. Department of Electrical and Computer Engineering University of Kashan Kashan Iran

2. Department of Electrical and Computer Engineering Aarhus University Aarhus Denmark

Abstract

AbstractInverter‐based virtual synchronous generators (VSGs) by introducing the virtual inertia enhance the microgrid frequency stability. The subject of this paper is regarding the stability analysis and enhancement of the study system comprising parallel‐operated VSGs feeding an active load. The active load with tightly closed‐loop control behaves such as constant power load resulting in stability issue. In the article, impacts of the dc‐side voltage control bandwidth of the active load and power level of active load on the system stability are examined. Then, an approach based on feedback linearising technique implemented on VSGs is presented for stabilising the system at higher levels of active load power. By employing the presented approach, the VSGs show reduced output impedance at the low and middle‐frequency ranges, and this in turn stabilises the system even at the rated level of the active load power and at higher control bandwidths of the active load dc‐side voltage control loop. Next, the linearised state‐space equations of converters and related controllers are transferred from local dq‐reference frames to a common dq‐reference frame, and then stability of the whole study system is analytically examined. At the end, time‐domain simulations and hardware‐in‐the‐loop experiments are given to verify the analytical results.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3