High proportion and large value harmonic current influence on the magnetic field, loss and temperature distribution for ultrahigh voltage converter transformer

Author:

Liu Cong1,Hao Jian1ORCID,Liao Ruijin1,Yang Fan1,Li Wenping2,Li Zhiwei2

Affiliation:

1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing China

2. Baoding Tianwei Group Baobian Electric Co., Ltd Baoding China

Abstract

AbstractThe temperature distribution of ultrahigh voltage (UHV) converter transformer is the key to its service life, allowable load and safe operation. The influence of a high‐proportion and large‐value harmonic current on the magnetic field, loss and temperature distribution of a UHV converter transformer is studied. A new calculation method is proposed to determine the winding temperature under the combined actions of multiple key factors. First, the skin effect of UHV converter transformer winding under high proportion and high current harmonics is analysed extensively. It is found that the increase of harmonic current frequency leads to exponential increase of winding loss and temperature by changing skin depth. Second, based on the superposition principle, a calculation method for winding loss considering harmonic current and different load rates is developed. The temperature distribution under different harmonic current frequencies and contents is obtained. The winding losses and temperature under different harmonic currents are quantified. Finally, a new calculation method is proposed for the converter transformer winding temperature, considering the combined actions of factors such as load rate, cooling oil inlet rate and temperature, harmonic current frequency and content. Experimental verification showed an error of only 0.58 K in the actual transformer hotspot temperature, confirming the effectiveness of this method. This method is of great significance for temperature control and safe operation of UHV converter transformers.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3