Short‐circuit current difference of parallel strands in winding turns and its influence on the distribution of electromagnetic force

Author:

Zhao Yi1ORCID,Si Jian1,Jin Mingkai2ORCID,Wen Tao1,Guo Penghong3,Chen Weijiang4

Affiliation:

1. School of Electrical Engineering and Automation Hefei University of Technology Hefei China

2. State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an China

3. Shandong Power Equipment Company Limited Jinan China

4. State Grid Corporation of China Beijing China

Abstract

AbstractTransformer winding turns often consist of multiple parallel strands. The spatial position variation of each strand affects the leakage inductance of each branch, resulting in an uneven distribution of short‐circuit currents within the winding turns. And this unevenness persists even when transposition structures are implemented. Traditional methods in transformer analysis frequently overlooked the distribution characteristics of short‐circuit currents when calculating electromagnetic forces. A frequency‐domain calculation method for analysing the current distribution in winding turns was proposed, with a deviation of less than 3% compared to existing analysis methods. Two typical 110 kV transformer models were utilised to investigate the influence of uneven current distribution on the spatial distribution of electromagnetic forces. The spatial distribution of short‐circuit electromagnetic forces in low‐voltage (LV) windings exhibited significant changes, with maximum change rates of 10% and 61.2% for axial and radial electromagnetic force, respectively, in a LV winding with 4 parallel strands. The research also analysed how strand radial width and axial height affect current distribution unevenness and proposed specific design principles to mitigate these disparities in winding design. The findings offer valuable insights for selecting structural parameters and assessing short‐circuit stability during transformer design.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3