Induction motor bearing fault classification using deep neural network with particle swarm optimization‐extreme gradient boosting

Author:

Lee Chun‐Yao12ORCID,Maceren Edu Daryl C.2

Affiliation:

1. Department of Electrical Engineering National Taiwan University of Science and Technology Taipei City Taiwan

2. Department of Electrical Engineering Chung Yuan Christian University Taoyuan City Taiwan

Abstract

AbstractIntelligent motor fault diagnosis in industrial applications requires identifying key characteristics to differentiate various fault types effectively. Solely relying on statistical features cannot guarantee high classification accuracy, while complex feature extraction techniques can pose challenges for industry practitioners. Conversely, advanced feature extraction may not ensure that the model effectively learns these features for classification. A feature fusion approach that combines statistical and deep learning features to address these challenges is proposed. Since statistical features form the foundation for general feature extraction, statistical and deep learning features are combined using Extreme Gradient Boosting (XGBoost) algorithm with Particle Swarm Optimization (PSO). The PSO algorithm automates parameter tuning for XGBoost. A deep neural network (DNN) adaptively extracts hidden features, improving bearing fault classification precision using t‐SNE representation. Results successfully prove the DNN's ability to classify diverse motor faults using deep learning features. Thus, integrating statistical features with XGBoost further enhances DNN's performance. To ensure robustness, the proposed method has been compared with different motor fault classification methods and validated across different motor fault datasets, showcasing improved classification accuracy and robust performance, even amidst varying noise levels. This approach represents a promising advancement in intelligent fault diagnosis within industrial contexts.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3