A multi‐criteria methodology with algebraic validation for the design of space vector switching sequences over a fundamental period horizon

Author:

Zucuni Jordan Pauleski1ORCID,Schuetz Dimas Alã1,de Morais Carnielutti Fernanda1,Grigoletto Felipe Bovolini2,Pinheiro Humberto1

Affiliation:

1. Power Electronics and Control Group Federal University of Santa Maria Santa Maria Rio Grande do Sul Brazil

2. Department of Electrical Engineering Federal University of Pampa Alegrete Rio Grande do Sul Brazil

Abstract

AbstractThis paper presents a novel methodology for the design of the Space Vector (SV) switching sequences in order to reduce the output voltage distortion and the common‐mode voltage (CMV) without increasing the number of commutations in comparison to conventional and optimised techniques presented in the literature. Three spaces can be distinguished in a converter, referring to: line‐to‐line voltages, phase voltages and switching states. Consequently, three correspondent sequences of vectors in each space can be verified. The output voltage distortion, CMV and switching count are mainly affected, respectively, by the sequences in the line‐to‐line voltage, phase voltage and switching state spaces. However, the three spaces are interdependent, and the selection of a sequence in one space affects the ones in the other spaces. As a consequence, this paper presents a novel SV approach, where the line‐to‐line voltage sequences are selected over a fundamental period horizon considering the impact in the phase voltages through an algebraic analysis, assuring minimal phase voltage transitions while using VIKOR method to choose the best trade‐off between reduction of output voltage distortion and CMV. In order to validate the proposed strategy, experimental results are given to a three‐phase five‐level Packed U‐Cell (PUC5) converter.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3