Hybrid analytical model for air‐gap magnetic field prediction of surface‐mounted permanent magnet motors with a quasi‐regular polygon rotor

Author:

Chen Chuntao1ORCID,Wu Xinzhen2ORCID,Yuan Xibo23,Ding Zhuang2,Zheng Xiaoqin2

Affiliation:

1. School of Automation Qingdao University Qingdao China

2. College of Electrical Engineering Qingdao University Qingdao China

3. Department of Electrical and Electronic Engineering University of Bristol Bristol UK

Abstract

AbstractIn this article, a hybrid analytical model for a quasi‐regular polygon rotor (QPR) is proposed. It mainly uses the subdomain method and conformal mapping to solve a non‐circular boundary in the QPR. Firstly, the subdomain method combined with an equivalent surface current method is used to calculate the air‐gap magnetic field considering a slotted stator with a circular rotor. Secondly, by segmenting the non‐circular boundary in the QPR, the complex relative air‐gap permeance of the QPR can be calculated using the conformal mapping. Thirdly, this complex relative air‐gap permeance modifies the air‐gap magnetic field calculated in the first step to obtain the actual magnetic field distributions. Consequently, no‐load and loaded air‐gap flux densities, back‐electromotive force and torque can be obtained. A 12‐pole/3‐phase permanent magnet motor is modelled using the proposed hybrid analytical model, which is validated by finite‐element analysis and experiment. This proposed hybrid analytical model presents a new way of processing the QPR. Its calculation speed is nearly 50 times faster than the finite‐element analysis, which is of great help to the initial design and optimisation of machines with QPRs.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3