Sparse representation for massive MIMO satellite channel based on joint dictionary learning

Author:

Guan Qing yang1ORCID,Wu Shuang1

Affiliation:

1. College of Engineering Xi'an International University Xi'an 710070 China

Abstract

AbstractA constrained joint dictionary learning (CJDL) algorithm for high‐precision channel representation in massive multiple input multiple output (MIMO) satellite systems is proposed. Furthermore, taking into account the angular reciprocity of massive MIMO satellite systems, joint dictionary learning can establish a common support basis for both uplink and downlink. Previous deterministic dictionary has utilized deterministic basis, such as discrete Fourier transform (DFT) or orthogonal DFT (ODFT) basis, which tend to represent noise interference as part of channel characteristics. Furthermore, this deterministic dictionary is not able to adapt to dynamic communication environments. However, dictionary learning has shown the potential to significantly improve the accuracy of channel representation. Nevertheless, current research on training dictionary lacks analysis regarding constraints and boundary requirements, resulting in a suboptimal basis. To address this issue, conditional constraints associated with joint dictionary for channel representation are analysed. To screen for optimal basis, the joint dictionary is subject to constraints, including uplink and downlink constraints. Furthermore, the authors aim to quantify the maximum boundary of joint dictionary learning. Additionally, a joint dictionary updating method with singular value decomposition under constraint boundary conditions is proposed. Simulation results demonstrate that the proposed CJDL algorithm provides a more accurate and robust channel representation.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3