Design of 60 GHz millimeter‐wave SIW antenna for 5G WLAN/WPAN applications

Author:

Al Soufy Khaled A.12,Al‐ashwal Nagi H.12,Swillam M. A.2,Al‐Kamali Faisal S.1,D'Amours Claude3,Marish Essa M.1,Alnajjar Ali N.1

Affiliation:

1. Department of Electrical Engineering Faculty of Engineering Ibb University Ibb Yemen

2. Department of Physics School of Science and Engineering The American University in Cairo New Cairo Egypt

3. School of Electrical Engineering and Computer Science Ottawa University Ottawa ON Canada

Abstract

AbstractBroadband millimeter Wave (mmWave) transmission at the 60 GHz band is a great prospect to meet the demanding high data rate requirements of future wireless personal area network (WPAN) and wireless local area network (WLAN) 5G networks. This paper proposes a single layer H‐plane sectoral horn mmWave antenna at 60 GHz using substrate integrated waveguide (SIW) technology for the future high‐speed short range WPAN and WLAN networks. The benefits of the proposed antenna are high gain, low cost, small size, and ease of integration with other planar circuits. The proposed SIW horn is constructed with RT/duroid 5880 substrate, which has a relative permittivity and loss tangent with a thickness of 0.508 mm. The novelty of this work is; a wider bandwidth is achieved by adding striplines at the horn aperture to match the antenna with air and to increase the antenna operating bandwidth. In addition, the antenna gain is improved by adding a dielectric lens with the striplines at the radiating end. During these steps, the antenna parameters are tuned and optimized to achieve the best results as compared to related previous studies. The proposed antenna's performance is analyzed in terms of gain, return loss (S11) and radiation pattern at a frequency of 60 GHz. Simulation results are carried out by using industry standard software, Computer Simulation Technology (CST) microwave studio. The designed antenna achieves a peak gain of 13 dB and impedance bandwidth when , 8.6 GHz (13.688%) for the reflection coefficient of . The results show that the proposed antenna achieves stable tunable 60 GHz frequency performance, which makes it feasible to deploy in WLAN/WPAN operating in mmWave bands.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3