Fast list decoders for polarization‐adjusted convolutional (PAC) codes

Author:

Zhu Hongfei1ORCID,Cao Zhiwei1,Zhao Yuping1,Li Dou1,Yang Yanjun1

Affiliation:

1. School of Electronics Engineering and Computer Science Peking University Beijing China

Abstract

AbstractA latest coding scheme named polarization‐adjusted convolutional (PAC) codes is shown to approach the dispersion bound for the code (128,64) under list decoding. However, to achieve the near‐bound performance, the list size of list decoding needs to be excessively large, which leads to insufferable time complexity. In this paper, to improve the speed of list decoding, fast list decoders for PAC codes are proposed. Four types of constituent nodes are defined and fast list decoding algorithms are provided for each of them. Simulation results present that fast list decoding with three types of constituent nodes can yield exactly the same error‐correction performance as list decoding, and reduce more than 50% time steps for the code (128,64). Moreover, fast list decoding with four types of constituent nodes can further reduce decoding complexity with negligible performance degradation.

Funder

National Key Research and Development Program of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast List Decoding of PAC Codes With New Nodes;IEEE Communications Letters;2024-03

2. Low-Complexity Fast Fano Decoding for PAC Codes;IEEE Transactions on Vehicular Technology;2023-12

3. Fast List Decoding of PAC Codes With Sequence Repetition Nodes;IEEE Communications Letters;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3