Online Dynamic Modelling for Digital Twin Enabled Sintering Systems: An Iterative Update Data-Driven Method

Author:

Ding Xuda123,Liu Wei123ORCID,Ye Jiale123,Chen Cailian123ORCID,Guan Xinping123

Affiliation:

1. Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China

2. Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China

3. Shanghai Engineering Research Center of Intelligent Control and Management, Shanghai 200240, China

Abstract

The sintering process is a crucial thermochemical process in the blast furnace iron-making system. Tumble strength (TS), as a vital performance to assess sinter quality, is difficult to monitor due to the lack of timely measurement. Constructing a data-driven model for TS is an alternative for monitoring TS. However, the time-varying dynamic sintering process makes the task of modelling challenging. And the data are incomplete and insufficient in practice for modelling since there are unknown time delays in the system and lack actual TS value. The digital twin (DT) technique is a powerful tool to simulate the system dynamics with the real-time interaction between physical processes and virtual agents in cyberspace. This paper introduces a DT-enabled equivalent of the sintering system and proposes online data-driven modelling for TS monitoring. The time delay in the system is estimated for variable sequence alignment based on a modified maximum information coefficient method. The data used for modelling is enriched based on a multi-source information fusion technique. An adaptive update method is proposed to deal with the time-varying dynamics. The iterative forgetting factor-based algorithm is designed for the support vector regression method and guarantees a fast computational speed. Implementation and validation of the model on a DT-enabled sintering system show the efficiency of the proposed method. The accuracy of TS monitoring reaches 99.6% by analysis of 3 months’ data.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3