Multi‐parameter optimization of performance and economic viability of Ferris wheel wind turbine for low wind speed regions in Africa

Author:

Adeyeye Kehinde A.1ORCID,Ijumba Nelson12ORCID,Colton Jonathan S.13ORCID

Affiliation:

1. African Centre of Excellence, Energy for Sustainable Development University of Rwanda Kigali Rwanda

2. School of Engineering University of KwaZulu Natal Durban South Africa

3. George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta Georgia United States

Abstract

AbstractPrevious studies on wind turbine and wind farm optimization for Levellized cost of energy (LCOE) and annual energy production (AEP) have focused on horizontal axis wind turbines (HAWT) and vertical axis wind turbines (VAWT). Regions with lower wind speed resources tend to have a higher levellized cost of energy and lower annual energy production. In this paper, the authors investigate the optimization of a novel, Ferris wheel wind turbine (FWT) for low wind speed regions of Africa. The research used an Excel‐based Multi‐Objective Optimization (EMOO) model. The EMOO program has both binary‐coded and real‐coded Elitist Non‐Dominated Sorting Genetic Algorithm (NSGA‐II). The optimization is conducted by studying the effect of varying the rim diameter, number of blades, and the rated wind speeds for an 800‐kW generator on the performance and economics in 21 African cities. The results show that, on average, the return‐on‐investment increases over the base design by up to 182%, and both the simple payback period (SPP) and the levellized cost of electricity decreased by 39% as the rim diameter increases combined with a 50% reduction in blade numbers. In addition, a 75% reduction in blade numbers caused a further 32% decrease on average for both the simple payback period and the levellized cost of electricity.

Publisher

Institution of Engineering and Technology (IET)

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3