Multi‐agent reinforcement learning based transmission scheme for IRS‐assisted multi‐UAV systems

Author:

Mei Yumo1ORCID,Liu Chen1ORCID,Song Yunchao1ORCID,Wang Ge1,Liang Huibin1

Affiliation:

1. College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications Nanjing Jiangsu China

Abstract

AbstractIn this paper, a transmission scheme based on multi‐agent reinforcement learning for intelligent reflecting surface (IRS)‐assisted multiple unmanned aerial vehicles (UAVs) systems is proposed. The proposed scheme is based on reinforcement learning and alternating optimization algorithm, which can effectively improve communication quality and ensure fairness. The scheme is divided into two parts. In the first part, the multi‐UAV cooperation problem is modeled as a markov decision process. The objective of each UAV is to maximize the minimum user channel gain. To achieve stable strategies for all agents, the Multi‐agent Deep Deterministic Policy Gradient (MADDPG) algorithm is applied to train UAVs trajectories to reach the Nash equilibrium. The MADDPG algorithm is centralized trained at the base station and executed in a distributed manner by each UAV, ensuring efficient and effective coordination among agents. In the second part, an alternating optimization algorithm is formulated to optimize active and passive beamforming. Considering the non‐convexity of the fairness objective, by using auxiliary variables and semi‐definite relaxation method, the problem of maximizing the minimum user achievable rate is transformed into a feasibility problem. Simulation results show that the proposed scheme can effectively train UAVs trajectories and improve the communication performance of all users fairly.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3