DRL based binary computation offloading in wireless powered mobile edge computing

Author:

Shen Guanqun1,Chen Wenchao1,Zhu Bincheng1,Chi Kaikai1ORCID,Chen Xiaolong2

Affiliation:

1. School of Computer Science and Technology Zhejiang University of Technology Hangzhou China

2. College of Information Engineering Jinhua Polytechnic Jinhua China

Abstract

AbstractThis paper considers the wireless powered mobile edge computing combining wireless power transmission (WPT) and mobile edge computing, where the hybrid access point (HAP) uses multiple radio beams to charge multiple wireless devices (WDs) and WD adopts the binary offloading mode to offload computation workload to HAP via FDMA. It is aimed to maximize the sum computation rate (SCR) of WDs by jointly optimizing the binary offloading decision, transmit power of each radio beam, and WPT duration. Due to the strong coupling between the offloading decision and other optimization variables, the SCR maximization is formulated as a mixed integer nonlinear programming problem. To address this challenging problem, an online DRL‐based decoupling optimization algorithm is proposed. Specifically, the original problem is first split into a top‐problem of optimizing binary offloading decision and a sub‐problem of optimizing transmit powers and WPT duration under given offloading decision. Then a self‐learning DRL framework is designed to output the near‐optimal offloading decisions. Finally, for the sub‐problem, based on the Lagrangian dual theory, an efficient approach to fast obtain the closed‐form expression of the optimal solution is proposed. The simulation results show that the proposed DRL‐based algorithm can achieve the near‐maximal SCR with low computational complexity.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3