An improved discrete Fourier transformation channel estimation algorithm with low complexity for orthogonal frequency division multiplexing‐based power line carrier communication systems

Author:

Fan Gao1,Yu Zhou1,Shuangshuang Zhao1,Yue Li1,Xiao Chen2,Chao Zhou1,Xiang Wang1,Zhen Zhang1

Affiliation:

1. State Grid Jiangsu Marketing Service Center Nanjing China

2. State Grid Jiangsu Electric Power Co., Ltd Nanjing China

Abstract

AbstractOrthogonal frequency division multiplexing (OFDM) technology has been increasingly applied to power line carrier communication (PLC). Discrete Fourier Transformation (DFT)‐based channel estimation algorithm is suitable for OFDM‐based PLC due to its low complexity. In view of the problem that the traditional DFT channel estimation does not consider the influence of noise inside cyclic prefix (CP), an improved DFT channel estimation based on signal‐to‐noise ratio (SNR) estimation is proposed. First, least‐square (LS) algorithm is performed and the frequency domain channel estimation is converted to the time domain through inverse DFT, and the average SNR of the system is estimated according to the pilot sequence. Second, the substitute SNR for each sample point inside CP is defined and used to filter impulse noise inside CP. Third, the average SNR is converted into the threshold of the useful signal energy inside CP, and the widespread background noise inside CP is filtered. The simulation results show that the proposed algorithm can obtain more accurate channel estimation than other DFT channel estimation algorithms because it can effectively filter out noise inside CP. In addition, compared with other similar algorithms, the proposed algorithm dose not result in a significant increase in complexity.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3