Massive heterogeneous data collecting in UAV‐assisted wireless IoT networks

Author:

Li Dongji1ORCID,Xu Shaoyi12,Li Yan1

Affiliation:

1. School of Electronic and Information Engineering Beijing Jiaotong University Beijing China

2. National Mobile Communications Research Laboratory Southeast University Nanjing China

Abstract

AbstractThis paper investigates the unmanned aerial vehicle (UAV)‐assisted wireless communication network that collects the data information of Internet of things (IoT) devices deployed in the region, where the cellular networks cannot cover. Due to the numerous variety and number of IoT devices, a large amount of data generated by IoT networks needs to be collected by UAV. The goal of this paper is to minimize the UAV's cruise time with the joint optimization of IoT devices communication scheduling, UAV trajectory, and transmit bandwidth allocation. To facilitate data collection by UAVs, the data‐distance‐k‐means (d2‐k‐means) algorithm is proposed to divide IoT devices into multiple initial clusters. However, the formulated problem is mixed‐integer joint non‐convex, so it is difficult to solve directly. Since it may be with relatively high computational complexity, as an alternative, a block coordinate descent (BCD)‐based method is designed. To tackle the non‐convex problem, a successive convex approximation (SCA)‐based algorithm is also proposed. Numerical results demonstrate that the proposed scheme is able to achieve significant performance over other schemes for scenarios of UAV‐assisted wireless IoT networks to collect massive amount of data.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Beijing Municipality

National Mobile Communications Research Laboratory, Southeast University

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3