A symmetric adaptive visibility graph classification method of orthogonal signals for automatic modulation classification

Author:

Bai Haihai1,Yang Jingjing1ORCID,Huang Ming1ORCID,Li Wenting1

Affiliation:

1. School of Information Science and Engineering Yunnan University Kunming China

Abstract

AbstractVisibility graph methods allow time series to mine non‐Euclidean spatial features of sequences by using graph neural network algorithms. Unlike the traditional fixed‐rule‐based univariate time series visibility graph methods, a symmetric adaptive visibility graph method is proposed using orthogonal signals, a method applicable to in‐phase and quadrature (I/Q) orthogonal signals for adaptive graph mapping for radio modulated signals in automatic modulation classification tasks. The method directly models the intra‐channel and inter‐channel graph relations of I/Q signals using two different types of convolutional kernels. It captures non‐Euclidean spatial feature information of I/Q signals using a graph neural network combining graph sampling aggregation and graph differentiable pooling as a feature extractor. Extensive experimental results on two benchmark datasets and a simulated dataset containing channel fading show that the proposed Quadrature Signal Symmetric Adaptive Visibility Graph (QSSAVG) method in this paper outperforms the benchmark method in terms of classification accuracy and is also more robust against channel fading and noise variations.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3