Fuzzy optimisation model of an incremental capacity auction formulation with greenhouse gas consideration

Author:

Bhachu Karanveer1,Elkasrawy Ayman1,Venkatesh Bala1ORCID

Affiliation:

1. Centre for Urban Energy Ryerson University Toronto Ontario Canada

Abstract

AbstractAn incremental capacity auction (ICA) is a mechanism to procure future generation capacity in a power system. Greenhouse gas (GHG) emissions from generators negatively affect our climate and there is a real need to reduce them. Thus, it is critically important for ICA models to procure future generation capacity that reduces GHG emissions. In this paper, we propose two ICA models incorporating energy‐limited generation (renewables and storage) and a GHG emission constraint. All offers are converted into unforced capacity, negating any effect of energy limitations of generation offers. The first ICA model uses classical optimisation and considers GHG emission limits and maximises social welfare (SW). The second ICA model uses a fuzzy optimisation technique to simultaneously optimise the objectives of SW maximisation and GHG emission minimisation. Both ICA models are tested on two datasets with 10 and 338 capacity supply offers constructed using Ontario data. While both models control GHG emissions as desired, the ICA model with fuzzy optimisation is shown to find a better balance between maximising net SW and minimising GHG emissions, with superior reductions in GHG for minor decreases in SW. Results demonstrate how GHG emission reduction results in increased selection of low carbon generation.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3